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Abstract
For systems governed by two kinds of interactions it is shown that these can be
built successively into the Green’s functions describing the system’s response.
Whereas for the ordinary Green’s function the Dyson equation to solve has
the same form in each step, we derive the non-trivial second-step equation
for the transfer or coupling function, which on the one hand is closely related
to the self-energy and on the other hand of practical relevance in transport
calculations.

PACS numbers: 02.60.Cb, 02.90.+p, 72.10.Bg

1. Introduction

The Green’s functions [1] present a powerful tool to calculate the response of complex systems,
as an evolution in time or the effect of a stimulus at any location in space. Electromagnetics
methods mostly aim at solving boundary value problems [2], however, evaluations of field
distributions and optical densities of states in open systems [3] dominated by multiple scattering
rely on the same propagators. In quantum mechanics [4–6] Green’s functions are used in the
context of getting density matrices that differ from those of an original system through time
evolution, added potentials or interactions. Spectral functions signal resonances or collective
excitations or help to calculate scattering cross sections. Transport problems present another
important area of employment for Green’s functions [7, 8].

The properties and recipes we discuss in the following are independent of the field of
application. Nevertheless, the general derivations have been initiated by working on specific
problems in electrodynamics [9] and quantum transport [10], of which the latter shall be
referred to as an example. It shall be shown that several interactions or perturbations that may
be of the same or of different kind, without ranking in importance or strength can be built
into the Green’s functions successively. This approach also works with renormalized transfer
functions, interactions or susceptibilities. However, the Dyson equation for these in the second
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step cannot simply be guessed in analogy to the ordinary one. The stepwise construction of
the Green’s functions requires no approximation and thus leads to the exact results. Sections
2–6 present the general formalism, the central part being the derivation of the second-step
transfer function Dyson equation in section 4. Section 7 is about our application in modeling
quantum transport through a double junction.

2. Two perturbations

The starting point is a homogeneous differential equation

Dξφ0(ξ) = 0 (1)

with a differential operator Dξ and a function φ0(ξ) as the solution. In quantum mechanics
(1) typically is the Schrödinger equation with Dξ being the Hamilton operator and φ0 the
wavefunction. We assume that the solution φ0 of (1) is known. The corresponding Green’s
function g of this unperturbed system satisfies

Dξg(ξ, ξ ′) = δ(ξ − ξ ′). (2)

g is also assumed to be known. g contains even more information about the system than a
special state φ0, because it gives the response to an elementary excitation. Now introducing a
potential, scattering or coupling term v1, the equations for the perturbed system read as

Dξφ(ξ) − v1(ξ)φ(ξ) = 0 (3)

for now the unknown solution φ and

DξG1(ξ, ξ ′) − v1(ξ)G1(ξ, ξ ′) = δ(ξ − ξ ′) (4)

for the unknown Green’s function G1 characterizing the response properties. Although
additional terms to the known basic system are commonly called perturbations, in contrast to
perturbation theory the Green’s function technique does not restrict these additions to small
changes. From (2) and (3) it can be deduced [11] that an integral equation for G1 is

G1(ξ, ξ ′) = g(ξ, ξ ′) +
∫

dξ ′′g(ξ, ξ ′′)v1(ξ
′′)G1(ξ

′′, ξ ′) (5)

or

G1 = g + gv1G1 (6)

for short. (5) is known as the Dyson equation.
If the perturbation consists of two parts v1 and v2, for the complete system’s Green’s

function G2 we should, of course, have set up the differential equation to satisfy as

DξG2(ξ, ξ ′) − (v1(ξ) + v2(ξ))G2(ξ, ξ ′) = δ(ξ − ξ ′). (7)

However, herein terms can be grouped differently and

(Dξ − v1(ξ))G2(ξ, ξ ′) − v2(ξ)G2(ξ, ξ ′) = δ(ξ − ξ ′) (8)

can be compared to (3) with Dξ − v1 instead of the original Dξ, v2 instead of v1,G2 replacing
G1 and G1 replacing g. Since g described the background system when building up G1, now
the system with v1 already included and described by G1 provides the basis for constructing
G2. Therefore

G2 = G1 + G1v2G2 (9)

2
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which represents a short notation for a contraction by integration like in (5). By inserting it
and using (4), one indeed verifies that the function G2 implicitly defined by (9) fulfils (7):

DξG1(ξ, ξ ′) + Dξ

∫
dξ ′′G1(ξ, ξ ′′)v2(ξ

′′)G2(ξ
′′, ξ ′)

− v1(ξ)G1(ξ, ξ ′) −
∫

dξ ′′v1(ξ)G1(ξ, ξ ′′)v2(ξ
′′)G2(ξ

′′, ξ ′)

− v2(ξ)G1(ξ, ξ ′) −
∫

dξ ′′v2(ξ)G1(ξ, ξ ′′)v2(ξ
′′)G2(ξ

′′, ξ ′)

= (Dξ − v1(ξ))G1(ξ, ξ ′)

+
∫

dξ ′′δ(ξ − ξ ′′)v2(ξ
′′)G2(ξ

′′, ξ ′) − v2(ξ)G2(ξ, ξ ′)

= δ(ξ − ξ ′). (10)

The construction of G2 successively by solving first (6) and then (9) is equivalent to directly
solving (7).

3. Transfer Green’s functions

From (4) on terms of the form v(ξ)G(ξ, ξ ′) appear. This means that an excitation is propagated
from ξ ′ to ξ with all influences from the perturbed system to maybe even repeatedly encounter
the perturbation v at ξ . For effects at ξ or those further propagated all information required
is the excitation at ξ . A renormalized perturbation function V (ξ, ξ ′) is needed to describe the
response at ξ of the system with all perturbations, including those located elsewhere from ξ ,
if otherwise one wants to use g(ξ, ξ ′) as if the excitation propagated through the unperturbed
background system. Rather than renormalized perturbation we shall call V the transfer
Green’s function for reasons explained later in the context of quantum transport calculations.

Vg = vG (11)

should be understood as the defining equation for V . Like the complementary form
G = g + Gvg of the Dyson equation

G = g + gvG (12)

(11) has the corollar with permuted factors gV = Gv. (11) and its corollar are now used for
conversion between G and V , as g and v are always known. The following little manipulation
translates the Dyson equation (12) for G into a Dyson equation for V : multiply it by v from
the right, then use the conversion and finally skip g on the left of all terms.

Gv = gv + gvGv ⇒ gV = gv + gvgV ⇒ V = v + vgV (13)

or V (ξ, ξ ′) = δ(ξ − ξ ′)v(ξ) +
∫

dξ ′′v(ξ)g(ξ, ξ ′′)V (ξ ′′, ξ ′). (Even with products meaning
integration, transformations as done to obtain (13) follow the rules as for matrix algebra.)
Written in short notation, (13) is of the same structure as (12) with g and v as well as G and
V interchanged.

4. The second-step transfer function

Just adding indices 1 in the notation, in the last section the transfer function and its Dyson
equation for the system with one perturbation were obtained, that is V1 = v1 + v1gV1 in
equivalence to G1 = g + gv1G1. Let us now introduce the second perturbation and—in
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analogy to G2—call the transfer function taking account of both V2. Had the perturbations
been put in at once together, we would have to work with the Dyson equations

G2 = g + g(v1 + v2)G2 (14)

V2 = (v1 + v2) + (v1 + v2)gV2 (15)

or their complementary forms. However, we here suppose that G1 and V1 are already calculated
and using these we want to establish a Dyson equation for V2 starting from (9). The deduction
runs as follows:

G2(v1 + v2) = G1(v1 + v2) + G1v2G2(v1 + v2)

G2(v1 + v2) = G1v1 + gv2 + gv1G1v2 + gv2G2(v1 + v2) + gv1G1v2G2(v1 + v2)

gV2 = gV1 + gv2 + gV1gv2 + gv2gV2 + gV1gv2gV2

V2 = V1 + v2 + V1gv2 + v2gV2 + V1gv2gV2 (16)

V2 = V1 + (1 + V1g)(v2 + v2gV2).

First (9) is multiplied by (v1 + v2). From the first to the second line in the term G1v2 as well
as the last term the development G1 = g + gv1G1 has been used. From the second to the third
line on the left the conversion is G2(v1 + v2) = gV2 according to at once full inclusion of all
interactions in the Green’s functions. On the right we needed G1v1 = gV1 and v1G1 = V1g

as well as again G2(v1 + v2) = gV2. A factor g on the left of all terms is skipped in the end.
Obviously the right-hand side of (16) is not v2 + v2gV2 and in (13) replacing V by V2 and v by
V1 + v2 or even by V1 + v2 + V1gv2 does not yield the correct result either, as discussed in the
appendix. The additional line after (16), however, gives a possibility to represent the Dyson
equation for V2 wherein V1 on the one hand and v2 and V2 on the other hand appear in well
separated parts.

5. Solving the Dyson equations

Solving Dyson equations, of course, is complicated by them being implicit integral equations.
In actual calculations, however, integrals get replaced by finite sums, which then makes V (ξ)

a vector and V (ξ, ξ ′), g(ξ, ξ ′) and G(ξ, ξ ′) matrices [9], or the convolution-like integrals are
turned into simple products of functions by using Fourier transforms of g, v,G and V [7, 12].
In both cases then the Dyson equations are solved by mere algebra as subliminally already
suggested by their short forms. We list the results as needed to establish either the normal or
the transfer Green’s functions in a two-step procedure.

G1 = (1 − gv1)
−1g (17)

G2 = (1 − G1v2)
−1G1 (18)

V1 = (1 − v1g)−1v1 (19)

V2 = (1 − v2g − V1gv2g)−1(V1 + v2 + V1gv2). (20)

Some technical details to remark: 1 means the unit matrix or simply the number one, whichever
is appropriate. If v1 and v2 become a list of numbers associated with a set of ξ because the ξ

space is discretized into finite elements, a vector space suffices to store these functions, but in
equations (17)–(20) they have to be implied as the corresponding diagonal matrices. In the
case that the original problem already involves different sites in space and interactions v then
invoke coupling between these, the transfer functions are conveniently set up as the respective
non-diagonal and full matrices (see section 7). The Dyson equations and their solutions have
been given in their most general form here.

4
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Figure 1. Illustration of equation (21). The effect an elementary excitation at ξ has at ξ ′ consisting
of the direct path and the path via the perturbations to the background system. (ξ or ξ ′ could as
well be in the gray area.)

6. Link to the self-energy

Especially if the problem consists in determining electron states or matrix elements between
them with a scattering potential, v from (12), commonly written �, is called the self-energy.
If Dξ in the original differential equation is an eigenenergy minus the Hamiltonian E − H ,
the equation with perturbation, that is (4) with setting v1 = �, is often solved in the way
of giving the Green’s function as an inverse operator G = (E − H − �)−1 [6]. For the
background and full system’s Green’s functions g and G there are the corresponding differential
equations (2) and (4) without and with perturbation. There is the Dyson equation (13) for the
transfer function V in complete analogy to (12) for G. Nolting discusses it as Dyson equation
for the density correlation [4] (chapter 5.6). However, there is no meaningful representation
of the differential equation (4) with V and g instead of v and G. V can be understood as a
renormalized self-energy when writing G as

G = g + gVg (21)

that is comprising the infinite series G = g + gvg + gvgvg + gvgvgvg + · · · in a form like
the first two terms only. Economou has such a notion of self-energy [5] (chapter 10.4) and the
quantity called � here, equal to v1 or v1 + v2 in our problems, should more precisely be called
irreducible or proper self-energy.

In contrast to g and G, v is a function of only one ξ variable whereas V is of ξ and ξ ′. ξ

actually being space variables, V can be viewed as non-local potential. The electrodynamics
application of the Green’s function formalism [3], where the wave equation for the electric
field is the differential equation to start with and v is the deviation of a position-dependent
ε(�r) from the background dielectric constant, can serve as a direct illustration. V is a measure
of the excitation an effect at ξ1 in the whole set of scatterers has at ξ2, such that (21), of
course integrating over ξ1 and ξ2, gives the complete influence of an excitation at any ξ

anywhere else at ξ ′ (figure 1). By the way, an example of a problem with two different
kinds of perturbations which can be treated by folding Green’s functions into one another as
described by (18) is a setup of scatterers with dielectric and magnetic susceptibilities [9]. In

5



J. Phys. A: Math. Theor. 41 (2008) 265202 U Schröter and E Scheer

the literature about Green’s functions in electrodynamics the normal function G is used, not
V as defined here, and changing the formalism would not bring any advantage in calculations
of field distributions and alike problems. The concept of including perturbations successively
has already long been applied in exactly this field, though, even for many more than two.
The recipe to construct the Green’s function for a configuration of scatterers is repeated use
of (9) as Gn = Gn−1 + Gn−1vn(1 − Gn−1vn)

−1Gn−1 adding scatterer vn in step number n
[3, 9 (electronic supplement), 11].

In the quantum transport application we shall discuss below, V will be denoted T and,
although in a Fourier representation be resolved into energy-dependent coefficients and phase
factors, essentially remains a function of two time arguments. An interpretation as an energy
or potential has no meaning in the non-equilibrium situation with an applied voltage driving a
current through one or several junctions. Not to be confused with a transmission (probability)
function, eventually but for some trivial phase factors or multiplying with densities of states,
our T is better identified to the (amplitude) scattering matrix s [6] (chapter 3).

7. Application

7.1. Introduction

As the example where the second-order Dyson equation for the transfer function is effectively
used—and which had led us to its deduction—we discuss coherent charge transport through
a superconducting double junction [10]. Properties and results for the single junction
[7] are recapitulated as a preparation. The constriction shall be described by a so-called
transport channel with transmission amplitude t (0 < t � 1). Most realistic quantum point
contacts accommodate several independent channels [13, 14], but for simplicity we restrict
the investigation here to one, and later on to one channel per junction in the double-junction
system. The interference of multiple reflections across the junction has to be taken into
account. In the normal-conducting state the transmission probability θ is given by the square
of a renormalized transmission amplitude, θ = 4t2

(1+t2)2 , and the current is proportional to the

applied voltage: I = 4t2

(1+t2)2
e2

h
V . With a constant density of states assumed in the model,

this result simply reflects the overlap on the energy axis of occupied electron states below the
Fermi energy on one side and empty states above it on the other. e2

h
is the so-called quantum

conductance [15]. Zero temperature is assumed.

7.2. Single junction and Andreev reflection

Whereas in the normal state even multiple reflections do not mix energy levels, Andreev
reflection complicates the picture for the superconducting state. Our calculation will include
multiple Andreev reflection (MAR), but no Cooper-pair tunneling [16]. Conductance from
electrons as well as from holes has to be considered. In a potential diagram Andreev reflection
is viewed as the conversion of an electron into a hole or vice versa and mirroring the energy
level at the Fermi level at the side the original particle is going to. Holes should be referred
to a reversed energy axis and they have occupied states above and empty ones below the gap
in both superconductors L and R. During a MAR the level of the charge carrier can come
anywhere outside or inside the gap on either side. The electron in the process from x2 in
figure 2 is depicted being in the middle of a MAR process. The process from x1 can be
a completed Andreev reflection as drawn. The electron originates from the filled reservoir
below the gap on the left side and the hole finds an empty state in that same reservoir (x1 in
figure 2(b) is a negative quantity). With the reversed energy axis for holes, the mirroring

6
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(a) (b)

Figure 2. (a) A narrow junction (point contact) between a left and right lead embedded in an
electrical circuit and charge transfers across the constriction in multiple reflections of increasing
order. (b) BCS density of states for superconducting reservoirs left and right with voltage drop V

between them. Energy axis for electrons and holes, a single Andreev reflection and one out of a
MAR process. AR can be viewed as electron–hole conversion and mirroring at the Fermi energy
level.

picture tells us that by MAR each energy level gets connected to a discrete ladder of those
lying multiples of 2eV away. (As the simplest example the AR in figure 2(b) goes from
x1 to 2eV + x1.) Andreev reflections can be preceded, followed or interluded by single or
multiple hoppings across the junction of an electron (or hole) remaining an electron (or hole)
and staying at constant energy. The model automatically includes these mixed processes.

In the transport problem we have to distinguish advanced and retarded Green’s functions
and all the Dyson equations from sections 2–6 are valid for either sort. Similar to the notation
in [9] we used v and V for the general formalism, but shall now call these quantities σ and
T, respectively. Primarily the Green’s and transfer functions are functions of time (ξ is now
called τ ), but the calculation works with Fourier representations. For example:

gr/a(τ, τ ′) = 1

2π

∫ ∞

−∞
dω gr/a(ω) e−iωτ eiωτ ′

. (22)

The background Green’s function describing a bulk superconductor such as the left or the
right reservoir without the connection between them is (skipping a constant for scaling to the
density of states per frequency interval [7, 11])(

gee geh

ghe ghh

)r/a

LL/RR

(ω) = 1√
(�/h̄)2 − (ω ± iη)2

(
−ω ∓ iη �/h̄

−�/h̄ ω ± iη

)
. (23)

η is an auxiliary small imaginary part to ω to determine the sign of the root. Smoothing the
singularities in the BCS density of states at the edges of the gap is not absolutely necessary.
(h̄η/� = 1 × 10−7 in the example calculations shown.) Multiple signs in (23) refer to the
retarded and advanced function in that order. Being a full matrix in electron–hole space, g

includes the conversion for Andreev reflection. The hopping function σ only has separated
electron and hole components. In contrast to the density of states (see figure 2(b)), although

7
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(a) (b)

Figure 3. (a) Normalized calculated current–voltage (IV ) curves for the single junction from
figure 2 with a single transport channel of transmission θ . Different values of θ . (b) IV for θ = 0.5
and calculation repeated for lower limits on the recursion parameter k. Inset: magnification of the
low-voltage region.

changing from imaginary to real values, g does not vanish inside the gap. For the hopping
function we have:(

σee 0
0 σhh

)
LR/RL

=
(

t e±ieV τ/h̄ 0
0 −t e∓ieV τ/h̄

)
. (24)

The phases have to fit to the time development of the superconductor wavefunctions left and
right. Directions LR and RL differ. σ does not distinguish the advanced and retarded cases,
whereas T will. For a left and a right reservoir with connection the original Schrödinger
equation already is a matrix equation in the site space consisting of left(L) and right(R), with

σ being the coupling part of the Hamiltonian. In this site space we have g = (
gLL 0

0 gRR

)
and

σ = (
0 σLR

σRL 0

)
, and we shall further introduce T = (

TLL TLR

TRL TRR

)
. The also full matrix G = (

GLL GLR

GRL GRR

)
is not needed here just for stating the resulting current formula. If written without LR-indices,
there are 2 × 2 matrices in site space behind the Green’s and transfer functions. There further
is a 2 × 2 matrix in eh-space behind each site space element of g, σ , T or G, although we
rarely explicitly write that. Once having obtained T r/a(ω) the current is evaluated as

I = e

∫ ∞

−∞
dω 2 Re

∞∑
k=−∞

Tr

[
T

r,k
RL(ω)g+−

LL

(
ω + k

eV

h̄

)
T

a,k
LR (ω)ga

RR(ω)

+ gr
LL

(
ω + k

eV

h̄

)
T

r,k
LR(ω)g+−

RR(ω)T
a,k
RL (ω)

]
(25)

where g+−(ω) = ga(ω) − gr(ω) for ω < 0 and g+−(ω) = gr(ω) − ga(ω) for ω > 0. Some
calculated current–voltage curves for the single junction are shown in figure 3(a). They are
in excellent agreement with experimental results [14] for single-atom contacts. For medium
θ they exhibit steps at submultiples 2�

ne
of the gap (n integer) for the applied voltage that stem

from Andreev reflection and higher-order MAR processes. In figure 3(b) the IV curve for
θ = 0.5 is shown together with the results for very low limits in the calculation on the k index,
the meaning of which will become clear in the next subsection. k = 5 is acceptable with this

8
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θ , k = 3 merely cuts some finer steps, but k = 1 is sufficient only for high voltages beyond
2�/e. The algorithm is made such that even this lowest-order limit does not completely miss
Andreev reflections, however, clearly gives much too low sub-gap current and even spurious
results for very small V . We shall not derive the current formula (25) here, but need to
summarize how T is calculated by a recursion [7].

7.3. Calculating the T-function

Equation (13) for the specific problem of the single-channel junction reads(
TLL TLR

TRL TRR

)
=

(
0 σLR

σRL 0

)
+

(
0 σLR

σRL 0

) (
gLL 0

0 gRR

)(
TLL TLR

TRL TRR

)
. (26)

As the procedure is alike for all components, and in calculating those appearing in (25), that
is LR and RL as both retarded and advanced, T r

LR is looked upon in an exemplary way (skip
superscript r from now on). Writing (26) componentwise and inserting these into one another,
a Dyson equation for TLR alone is extracted:

TLR = σLR + σLRgRRσRLgLLTLR

or

TLR(τ, τ ′) = δ(τ − τ ′)σLR(τ)

+
∫ ∞

−∞
dτ1

∫ ∞

∞
dτ2 σLR(τ)gRR(τ, τ1)σRL(τ1)gLL(τ1, τ2)TLR(τ2, τ

′). (27)

Based on the connection of energy levels to those and only those multiples of eV or of 2eV

away, the Fourier representation of T can be set up as:

T (τ, τ ′) = 1

2π

∞∑
k=−∞

∫ ∞

−∞
dω T k(ω) e−iωτ e−ikeV τ/h̄ eiωτ ′

(28)

(k is a superscript, not a power.) In TLR exclusively odd k appear. One eV is allowed for
changing the reference level from the left Fermi energy to the right one. Some care must
be taken which one the argument ω refers to [11], but here this issue shall be restricted to
the remark that making the argument the same for all T-functions in (25) is of advantage.
Exploiting complex conjugate relations can save some effort in providing them [12].

Now using (24), (22) and (28) in (27) produces(
Tee Teh

The Thh

)k

(ω) = δk,1

(
t 0
0 0

)
︸ ︷︷ ︸

t1

+δk,−1

(
0 0
0 −t

)
︸ ︷︷ ︸

t−1

+t2

(
gee

(
ω + (k − 1) eV

h̄

)
0

0 ghh

(
ω + (k + 1) eV

h̄

)) (
gee geh

ghe ghh

) (
ω + k eV

h̄

)
︸ ︷︷ ︸

εk

(
Tee Teh

The Thh

)k

(ω)

−t2

(
0 geh

0 0

) (
ω + (k − 1) eV

h̄

) (
0 0

ghe ghh

) (
ω + (k − 2) eV

h̄

)
︸ ︷︷ ︸

V −
k

(
Tee Teh

The Thh

)k−2

(ω)

−t2

(
0 0

ghe 0

) (
ω + (k + 1) eV

h̄

) (
gee geh

0 0

) (
ω + (k + 2) eV

h̄

)
︸ ︷︷ ︸

V +
k

(
Tee Teh

The Thh

)k+2

(ω)
(29)
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(29) is a relation for T as functions of frequency and has to be solved for each ω. With z+
k and

z−
k defined by

T k+2 = z+
kT

k and T k−2 = z−
k T k (30)

these are evaluated as

z+
k−2 = (

1 − εk − V +
k z+

k

)−1
V −

k and z−
k+2 = (

1 − εk − V −
k z−

k

)−1
V +

k (31)

cutting the range of k such that for a maximum positive k the term V +
k z+

k is set to zero as well
as V −

k z−
k for a minimum negative k. z+

k is thus provided going down to k = 1 for positive k (k
is odd) and z−

k is obtained going up to k = −1 for negative k. T k is then initiated by solving

T 1 = t1 + ε1T
1 + V +

1 z+
1T

1 + V −
1 T −1

(32)
T −1 = t−1 + ε−1T

−1 + V +
−1T

1 + V −
−1z

−
−1T

−1.

From these all other T k up to the limits of k are easily evaluated using (30). It is interesting to
note that the necessity to cut the k-range to finite values does not limit the order of the multiple
(Andreev) reflection processes included. It restricts the energy difference a process can go
away from the Fermi energies or the gap edges left and right. As larger energy differences
require electron–hole conversion and the off-diagonal components geh and ghe tend to zero
for ω → ±∞, the error can be made negligible. Smaller voltages V require higher k-limits.
Through the inward-recursion for z±

k preceding the outward one to calculate the T k , even T k

for small k depend on the k-limit. This seems a subtle effect in some narrow peaks, however,
the evaluation of the current includes calculating the area under such peaks. Figure 4 as an
example shows a single component of a transfer function as well as the integrand for the current
function in (25), which but for two more g-factors is kind of a squared absolute amplitude of
the transfer function.

7.4. Double junction and difficulties getting T

As besides the general derivation in section 4 is the main purpose of this paper, we shall
now extend the Green’s functions formalism for the transport problem to the double junction
(figure 5). We assume a sufficiently small island between the two junctions, such that coherence
can be maintained in transport across it, but large enough and bulk-like, such that a few excess
charges do not alter the BCS density of states or the occupation given by the Fermi function.
To actually calculate current–voltage characteristics, with the interest in whether Coulomb
blockade suppresses MAR, the island’s Fermi energy level needs to be changed with island
charging as is done in [10, 12]. However, in order to discuss unadulteratedly the recipe
to establish the transfer Green’s function, the island shall here be assumed to stay at fixed
potential. Transport does not merely consist of coherent processes beginning in the left lead
and ending in the right or vice versa. Coherent multiple (Andreev) reflection processes extend
over both junctions. Nevertheless, they can start or end on the island, which acts as a reservoir
like the leads. Sequential transport with relaxation on the island is equally present. Formula
like (25)—although having more terms [10, 17]—for the double junction give rates for the
island to change its excess charge. A stationary state is then found from a system of classical
rate equations. The transfer Green’s function is needed anyway, and its determination is the
problem to focus on here. With three sites the complete Dyson equation à la equation (15)

10
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(a)

(b)

,

,

k
=

Figure 4. (a) Single-junction transfer function T
r,k=3
RL,ee(ω) for θ = 0.5 at V = 0.75�/e, Re (solid

lines), Im (dashed lines); thick gray lines are results with highest k = 3, thin black lines with highest
k = 5. Insets: peak at ω = −2�/h̄ that is drastically smoothed in more accurate calculation. Peak
positions are labeled as multiples of eV plus/minus � (compare energy axis in figure 2(b)). (b)
The complete integrand from equation (25), that is both terms for all included k from all possible
combinations of eh-components, as a function of ω again for θ = 0.5 at V = 0.75�/e. For
the too-low k-limit 1 the integrand in some ranges even has the wrong sign, whereas for the
acceptable limit 5, the peak structure reflects that all essential MAR are included. The fact that the
complete integrand in contrast to a single T-component is symmetric around ω = 0 is due to the
addition of electron and hole contributions.

reads as⎛
⎝TLL TLI TLR

TIL TII TIR

TRL TRI TRR

⎞
⎠ =

⎛
⎝ 0 σLI 0

σIL 0 σIR

0 σRI 0

⎞
⎠

+

⎛
⎝ 0 σLI 0

σIL 0 σIR

0 σRI 0

⎞
⎠

⎛
⎝gLL 0 0

0 gII 0
0 0 gRR

⎞
⎠

⎛
⎝TLL TLI TLR

TIL TII TIR

TRL TRI TRR

⎞
⎠ . (33)
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(b)(a)

Figure 5. (a) Structure with two junctions and three reservoirs left (L), island (I) and right (R).
Coherent multiple reflections and MAR may extend over both junctions. (b) Superconductor
densities of states (DOS) for all three reservoirs with voltage drop VL and VR , respectively, over
the junctions. VL + VR = V and VL:VR is determined by assigning a capacitance to each junction.
Shifts of the complete DOS of the island due to charges on it changing its electrical potential are
ignored here.

According to the setup there is no direct coupling between L and R. As Andreev reflections
can alter the energy level by twice the voltage equivalent dropping over the left junction or
twice that over the right junction, for all T-components the ansatz as Fourier representation is

T (τ, τ ′) = 1

2π

∞∑
k=−∞

∞∑
p=−∞

∫ ∞

−∞
dω T k,p(ω) e−iωτ e−ikeVLτ/h̄ e−ipeVRτ/h̄ eiωτ ′

. (34)

Analogously to (27), writing (33) as 9 component equations and putting them into one another,
implicit equations for single T-components can be derived, for example,

TIR = σIR + σILgLLσLIgII TIR + σIRgRRσRIgII TIR. (35)

In the same way that (29) was got from (27), an equation like (35) translates into the form

T k,p = δp,1tR,1 + δp,−1tR,−1 + εk,pT k,p + V +
k (p)T k+2,p + V −

k (p)T k−2,p

+ V +
p (k)T k,p+2 + V −

p (k)T k,p−2 (36)

for functions T k,p of each frequency ω. Components TRI and TIR have odd p and even k
and therefore seed terms δp,1tR,1 and δp,−1tR,−1. TLI/IL would have δk,1tL,1 and δk,−1tL,−1,
for TLR/RL we would have to take δk,±1tL,±1 · δp,±1tR,±1, for TII δk,s tL,s and δp,s tR,s with
s = −2, 0, 2 and for TLL and TRR only one of those, respectively. (The form (36) only works
for TIR, TIL and TII , however.) As coefficients ε and V ± are given through g, equations (36)
for all (k, p) can be taken as a linear system of equations and solved by a matrix inversion. It
is not even necessary to separate Dyson equations into those for individual T-components in
site space. As relations for functions of ω, matrix inversion can directly be applied to (26) or
(33), having each T k,p connected to other components T k±1,p or T k,p±1 in site space. Because
of the many-fold combinations of eh-components the matrices to invert become rather big,
though sparse, already for quite modest limits on k and p. We mentioned this direct approach
to illustrate that working with an ansatz like (14) or (15) putting all interactions in at once is
not in principle impossible, however, is likely to become cumbersome, especially with respect
to the practical aspect of creating efficient computer codes.

12
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However, even if working with the couplings across the left and the right junctions at the
same time, (36) in analogy to the calculation for the single junction suggests attempting to
evaluate the T k,p by a recursion, which does not require inversion of large matrices. With
definitions for z+

T k+2,p = z+
k (p)T k,p and T k,p+2 = z+

p(k)T k,p (37)

in (36) leading all T back to T k−2,p−2 for p �= ±1 results in

z+
p−2(k)z+

k−2(p − 2) = εk,pz+
p−2(k)z+

k−2(p − 2) + V +
k (p)z+

k (p)z+
p−2(k)z+

k−2(p − 2)

+ V −
k (p)z+

p−2(k − 2) + V +
p (k)z+

p(k)z+
k−2(p)z+

p−2(k − 2) + V −
p (k)z+

k−2(p − 2).

(38)

Intermingling the raising and lowering of the k- and p-index during the recursion is in
principle conceivable, however, even exploiting the necessity that z+

p−2(k)z+
k−2(p − 2) =

z+
k−2(p)z+

p−2(k − 2) does not help to decide whether to rearrange (38) as to give an expression
for z+

k−2(p − 2) or one for z+
p−2(k − 2) and how to evaluate either yet being ignorant of

the other. z−
k (p) and z−

p (k) can be defined in obvious analogy to (37). Products of z+’s

may be avoided by expressing all T in (36) by T k,p using T k−2,p = (
z+
k−2(p)

)−1
T k,p and

T k,p−2 = (
z+
p−2(k)

)−1
T k,p. This attempt—the same as trying to use inverse z in (38)—

equally runs into a dead end having the two unknowns z+
k−2(p) and z+

p−2(k) in the recursion
relation.

7.5. Two-step procedure for T

Since the two-dimensional recursion in k and p (in analogy to the single-junction case) does
not work out, we now develop an algorithm taking into account the couplings across the left
and right junctions one after another. First a transfer Green’s function now called T 1 is made
for the system with only the connection between L and I present applying exactly the algorithm
known from the single junction. However, instead of TLI in analogy to TLR from the single
junction, it comes in handy to select the Dyson equation reduced to the component T 1

II . For
the second step adding the connection between I and R, the Dyson equation to use is (16).
All quantities are 3 × 3 matrices in site space in this case. V2 is the full T-matrix as in (33).
v2 only has entries σIR and σRI and zeros everywhere else. g, of course, is diagonal with
gLL, gII and gRR . V1 with entries T 1

LL, T 1
LI , T

1
IL and T 1

II has to be completed by a third line
and column of zeros. Thus with the analog of (26) as the first-step Dyson equation(

T 1
LL T 1

LI

T 1
IL T 1

II

)
=

(
0 σLI

σIL 0

)
+

(
0 σLI

σIL 0

)(
gLL 0

0 gII

)(
T 1

LL T 1
LI

T 1
IL T 1

II

)
(39)

the second-step Dyson equation reads as⎛
⎜⎝

TLL TLI TLR

TIL TII TIR

TRL TRI TRR

⎞
⎟⎠ =

⎛
⎜⎝

T 1
LL T 1

LI 0

T 1
IL T 1

II 0

0 0 0

⎞
⎟⎠ +

⎛
⎜⎝

0 0 0

0 0 σIR

0 σRI 0

⎞
⎟⎠

+

⎛
⎜⎝

T 1
LL T 1

LI 0

T 1
IL T 1

II 0

0 0 0

⎞
⎟⎠

⎛
⎜⎝

gLL 0 0

0 gII 0

0 0 gRR

⎞
⎟⎠

⎛
⎜⎝

0 0 0

0 0 σIR

0 σRI 0

⎞
⎟⎠
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+

⎛
⎜⎝

0 0 0

0 0 σIR

0 σRI 0

⎞
⎟⎠

⎛
⎜⎝

gLL 0 0

0 gII 0

0 0 gRR

⎞
⎟⎠

⎛
⎜⎝

TLL TLI TLR

TIL TII TIR

TRL TRI TRR

⎞
⎟⎠

+

⎛
⎜⎝

T 1
LL T 1

LI 0

T 1
IL T 1

II 0

0 0 0

⎞
⎟⎠

⎛
⎜⎝

gLL 0 0

0 gII 0

0 0 gRR

⎞
⎟⎠

×

⎛
⎜⎝

0 0 0

0 0 σIR

0 σRI 0

⎞
⎟⎠

⎛
⎜⎝

gLL 0 0

0 gII 0

0 0 gRR

⎞
⎟⎠

⎛
⎜⎝

TLL TLI TLR

TIL TII TIR

TRL TRI TRR

⎞
⎟⎠ . (40)

Again, from the 9 component equations (40) we insert that having TII on the left into the
expression for TRI to get a Dyson equation for one component, TRI chosen as example here,
exclusively:

TRI = σRI + σRIgII T
1
II + σRIgII σIRgRRTRI + σRIgII T

1
II gII σIRgRRTRI

= σRI

(
1 + gII T

1
II

)
+ σRI

(
1 + gIIT

1
II

)
gII σIRgRRTRI . (41)

Equations for other components of the final transfer function may have a little different
structure, especially will there be terms beginning with T 1 in those for T with first index L or
I. In (40) or (41) T 1 is a known function like g and σ . Like (29) follows from (27), (41) is
transformed into a recursion relation with respect to the p-index by inserting representations
(34) for TRI , (28) for T 1

II , (22) for g and (24) with tR and VR for σRI/IR:

T p(k) = δp,±1t±1(k) +
∑
k′

εp(k, k′)T p(k′)

+
∑
k′

V +
p (k, k′)T p+2(k′) +

∑
k′

V −
p (k, k′)T p−2(k′) (42)

k and k′ are even. The seed t±1(k) corresponds to σRI + σRIgII T
1
II here. As the prefactors ε

and V ± can already contribute multiples of the potential drop over the left junction in energy
change, the recursion relation directly interlinks T k,p(±2) with all k-indices. The z±

p as well
as factors in their calculation are full matrices now with the dimension of the k-range (each
entry further representing a quadruple of eh-space components). Matrix inversion cannot
be avoided, however, whereas in the approach for a direct solution of (33) mentioned in the
last section we would have had to deal with matrices of size the k-times the p-range, the
size only the k-range is much more modest here. We applied a special inversion procedure
known from Green’s tensors in electrodynamics [9, 11]. In translating the Dyson equation
(41) into Fourier space, it is clear that terms σRI and σRIgII σIRgRRTRI follow the scheme
from (29), especially concerning which components of g of which arguments to put (replace
k by p, t by tR and V by VR). These terms only contribute to t±1, εp and V ±

p of k = k′.
σRIgII T

1
II gives further contributions ±δp,±1tRgII

(
ω + k eVh

h̄

)
T

1,k
II (ω) to t±1(k). There are all

four components in eh-space, namely geeT
1
ee + gehT

1
he and geeT

1
eh + gehT

1
hh (with plus sign) as

well as gheT
1
ee + ghhT

1
he and gheT

1
eh + ghhT

1
hh (with minus sign). From the prefactor of TRI in

the last term, that is σRIgII T
1
II gII σIRgRR , there are contributions to εp(k, k′) if σRI and σIR

mean either both an electron or both a hole hopping. σRI being an electron and σIR a hole,
the contribution goes into V −

p , and for σRI a hole and σIR an electron, it is put into V +
p . Each

of these cases still consists of the sum of four possible combinations of eh-indices, as for

14



J. Phys. A: Math. Theor. 41 (2008) 265202 U Schröter and E Scheer

example with two electron-σ we have for the ee-component

σRI
ee gII

ee T 1,I I
ee gII

ee σ IR
ee gRR

ee + σRI
ee gII

ee T
1,I I
eh gII

he σ
IR
ee gRR

ee

+ σRI
ee gII

ehT
1,I I
he gII

ee σ IR
ee gRR

ee + σRI
ee gII

ehT
1,I I
hh gII

he σ
IR
ee gRR

ee . (43)

In the following we note the components to go into the coefficients as in (29) with frequency
arguments. For simplicity of notation we just use VL and VR meaning eVL/h̄ and eVR/h̄.
Note that for setting up the equation for TRI (ω), T 1

II is needed of quite a few different
frequencies, namely of arguments varying by ±2VR for each p and as many multiples of VL

as k involved.

ee : t2
RgII (ω + kVL + (p − 1)VR)T k−k′

II (ω + k′VL + (p − 1)VR) ·
gII (ω + k′VL + (p − 1)VR)gRR(ω + k′VL + pVR) → εp(k, k′)

eh : −t2
RgII (ω + kVL + (p − 1)VR)T k−k′

II (ω + k′VL + (p − 1)VR) ·
gII (ω + k′VL + (p − 1)VR)gRR(ω + k′VL + (p − 2)VR) → V −

p (k, k′)

he : −t2
RgII (ω + kVL + (p + 1)VR)T k−k′

II (ω + k′VL + (p + 1)VR) ·
gII (ω + k′VL + (p + 1)VR)gRR(ω + k′VL + (p + 2)VR) → V +

p (k, k′)

hh : t2
RgII (ω + kVL + (p + 1)VR)T k−k′

II (ω + k′VL + (p + 1)VR) ·
gII (ω + k′VL + (p + 1)VR)gRR(ω + k′VL + pVR) → εp(k, k′). (44)

In figure 6 we calculated one component out of the TRI -function with and without
interaction corrections due to backreflections from the left lead. Figure 6(a) is for a situation
where the voltage drops across both junctions each clearly exceed the 2� superconductor gap.
ω = 0 is the island Fermi level taken for reference, and images of the gaps from the three sites
clearly appear distinct from one another. Naturally, that of the left lead is smaller if the left
junction is given smaller transmission and disappears if it is ignored by setting kmax to zero.
For a p = 1 part as chosen here, interaction corrections due to hoppings over the left junction
do not only alter the peak structure in the transfer function around images of the gap potentials,
but also change the constant high and low frequency limit of the real part value. However,
apart from a finite interval comprising the peak structures the resulting non-zero integrand
for current rates is canceled by corresponding hole contributions in any case, though. More
images than the primary ones of the three gap positions are tiny for rather high applied voltage
as in figure 6(a), but some are still discernable. In figure 6(b) where the same T-component is
shown for applied voltages across the two junctions both less than 2�/e, pairs of gap edges
from images of the DOS of all three reservoirs become harder to disentangle. In addition to
peaks or edges at multiples of the individual voltage drops plus or minus �, we find some
at positions given by combinations of both voltage drops, which is an evidence for MAR
extending over both junctions included in our formula for the transfer function. Sums of
products of T for all k and p like in (25) could now be made. However, as mentioned earlier, to
realistically model transport through the double junction, frequency arguments of g-functions
in expressions like (44) would have to be corrected for the island Fermi level changing with
the excess charge. With zero charging energy setting up rate equations in order to determine
a stationary state does not make sense. The goal of this work was to present the second-step
T-function equation.
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(a)

(b)

Figure 6. (a) Double-junction transfer function T
r,k=0,p=1
RI,ee (ω) for VL = 3.75�/e and

VR = 6.25�/e. θR = 0.5 and limit on p in calculation is 5 for all curves. θL and limit on k are
varied. The real part also shows tiny structures centered around −2VL, −VR, VL and 2VR , which
are not shown enlarged. (b) Same T

r,k=0,p=1
RI,ee (ω) for VL = 1.3�/e, VR = 0.9�/e, θL = θR = 0.8

and limit on p is 5. Limit on k either 6 or 0. Identification of peaks or edges (not necessarily
complete list), numbers are positions on the ω-axis, VL/R is written for eVL/R/h̄ and � ≡ 1:
−2.9 = −3VL +�, −2.7 = VR −2VL −�,−2.5 = −VR −2VL +�, −2.3 = −VL −�, −1.9 =
−VR −�,−1.8 = 2VR −2VL −�, −1.7 = −3VR +�, −1.6 = −2VL +�, −1.0 = −�,−0.8 =
−2VR + �,−0.3 = −VL + �,−0.1 = VR − �, 0.1 = −VR + �, 0.2 = 2VR − 2VL + �, 0.3 =
VL − �, 0.8 = 2VR − �, 1.0 = �, 1.5 = 2VR − VL + �, 1.7 = 3VR − �, 1.9 = VR + �, 2.0 =
4VR − 2VL + �, 2.3 = VL + �, 2.5 = VR + 2VL − �, 2.6 = 4VR − �, 2.8 = 2VR + �.

7.6. Additional remarks

Labeling the left junction as the first and the right junction as the second interaction was an
arbitrary choice, regardless of which component (we chose RI as example) of the transfer
function is the desired one.

Even for the transport problems like those addressed here, it is not an absolute necessity
to use the transfer Green’s function. The current formula could be used in its original form

I = e · Tr
{
σLRG+−

RL − σRLG+−
LR

}
. (45)

(The trace, like in (25), is in eh-space.) For the double junction with either L or R replaced
by I these are probabilities to charge and decharge the island to be entered into rate equations
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(there is a different sign between terms and a balance between going to and from a charge state
when calculating charging rates instead of a single-junction current) [10, 12]. The G-function
appearing here is

G+− = (1 + Grσ)g+−(1 + σGa). (46)

Then Gr and Ga have to be calculated in recursions in the same way as has been described for
T r and T a . Though subtle to realize, working with the T-functions has advantages. In (25) or
the corresponding expression for the double junction [10, 17], a consistent choice of the ω-zero
reference level is crucial, which is more easily ensured with, for example, a gRR(ω) in each
term of the T-formula. Furthermore in a calculation for the double junction—with according
for the fact that each hopping changes the state of the island by one charge—bare σ at the
ends of products would demand individual limits on calculations with e- and h-components at
some stage. If n denotes the maximum island charge considered, single hoppings that change
to n − 1 have to be taken with, whereas such that go to n + 1 must not, because multiple
reflection corrections for processes involving this state are missing. By the necessarily finite
ranges for the k- and p-indices on T, we limit the number of charges having gone through each
junction from infinitely long ago up to any time and therefore cut processes exceeding these
amounts. However, within these absolute charge limits (holes cancel electrons in the charge
sums) all multiple back—and forth—and Andreev reflections are included.

8. Conclusions and outlook

It has been discussed in general how two perturbations, that is potentials or interactions, can
be built into the system’s Green’s function successively. Looking at the relation of the total
system’s Green’s function to that of the background system as a model, we called the transfer
Green’s function the quantity that relates analogously to the self-energy or bare interaction.
For this transfer Green’s function the second-step Dyson equation, which is of non-trivial
structure, has been derived.

As an application we have presented the extension of an algorithm to calculate the
transfer Green’s function from a single quantum-point junction between superconducting bulk
reservoirs to a series of two such contacts. The purpose of this study was to illustrate how effects
from both interactions, the couplings across each junction in this case, individually or mixed
together appear in the Green’s function. The latter is an image of the interaction processes—
multiple reflection here—occurring in the system. The Green’s functions are an ingredient
needed to calculate the current through the double-junction system. However, extending the
single-junction current expression, which for the double junction provides charging rates of
the island, to the case of coherent interaction over both junctions is a different issue. A
representation in analogy to the single-junction current formula with mere two-products of
transfer Green’s functions [10] facilitates the physical interpretation in terms of transport
processes as well as achieving numerical stability in modeling conduction properties. This
derivation will be given elsewhere [17].

Appendix

As this may be quite instructive, we shall discuss here why even elaborate guesses for
the second-step transfer Green’s function’s Dyson equation fail. To this end we use series
expansions which generally are for G and V :

G = g

∞∑
n=0

(vg)n and V = v

∞∑
n=0

(gv)n. (A.1)
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Directly setting up the results for the system with two kinds of interaction we get

G2 = g

∞∑
n=0

((v1 + v2)g)n and V2 = (v1 + v2)

∞∑
n=0

(g(v1 + v2))
n. (A.2)

With always g in between and for G also as outermost multipliers, every possible product of
factors v1 and v2—that is every sequence—has to be contained exactly once. (Multiplication
is not commutative here.) The right-hand sides of (9) and (16) reproduce the required sums,
although the grouping of contributions may be a little confusing. We list categories of terms
in the following. For the correct results these are complete and mutually exclusive. For the
incorrect guesses of expansions for V2 we comment where the mistakes are. (All sums over n
and m run from 0 to ∞.)
Correct formula:

G1 + G1v2G2 = g
∑

n(v1g)n −with v1 only
+ g

(∑
n(v1g)n

)
v2g

(∑
m((v1 + v2)g)m

) −all possible with v1 and v2

but at least containing one v2

V1 + v2 + V1gv2 + v2gV2 + V1gv2gV2 = v1
∑

n(gv1)
n −with v1 only

+ v2 −v2 just once
+ v1

(∑
n(gv1)

n
)
gv2 −with v1 only (at least once)

but once v2 at end
+ v2g(v1 + v2)

∑
n(g(v1 + v2))

n −at least two factors v

with v2 at beginning
+ v1

(∑
n(gv1)

n
)
gv2g(v1 + v2)

(∑
m(g(v1 + v2))

m
) −at least three factors v

with v1 at beginning
at least containing one v2;
if end is v2 : contains at least two v2

Incorrect guesses:

v2 + v2gV2 =
v2 + v2g(v1 + v2)

∑
n(g(v1 + v2))

n −terms beginning with v1 are missing

V1 + v2 + (V1 + v2)gV2 =
v1

∑
n(gv1)

n −with v1 only
+ v2 −v2 just once
+

[
v1

(∑
n(gv1)

n
)

+ v2
]
g(v1 + v2)

(∑
m(g(v1 + v2)

m
) −also contains products with v1 only

even multiple appearances
of same power

V1 + v2 + V1gv2 + (V1 + v2 + V1gv2)gV2 =
v1

∑
n(gv1)

n −with v1 only
+ v2 −just once v2

+ v1
(∑

n(gv1)
n
)
gv2 −with v1 only but once v2 at end

+
[
v1

( ∑
n(gv1)

n
)

+ v2 + v1
(∑

n(gv1)
n
)
gv2

]· −also contains terms with v1 only;
g(v1 + v2)

(∑
m(g(v1 + v2))

m
)

terms with only v1 but once
v2 at end also appear again
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